Aryan Deshwal - Bayesian Optimization over Combinatorial Structures

日付:

2022年5月26日

著者:

Hrvoje Stojic

Bayesian Optimization over Combinatorial Structures



Abstract

Scientists and engineers in diverse domains need to perform expensive experiments to optimize combinatorial spaces, where each candidate input is a discrete structure (e.g., sequence, tree, graph) or a hybrid structure (mixture of discrete and continuous design variables). For example, in drug and vaccine design, we need to search a large space of molecules guided by physical lab experiments. These experiments are often performed in a heuristic manner by humans and without any formal reasoning. Bayesian optimization (BO) is an efficient framework for optimizing expensive black-box functions. However, most of the BO literature is largely focused on optimizing continuous spaces. In this talk, I will discuss the main challenges in extending BO framework to combinatorial structures and some algorithms that I have developed in addressing them.


Notes


  • Personal website can be found here.

ソーシャルメディアで共有

ソーシャルメディアで共有

ソーシャルメディアで共有

ソーシャルメディアで共有

関連するセミナー

Mickael Binois - Leveraging replication in active learning

We were recently joined by Mickael Binois, to talk about 'Leveraging replication in active learning'.

2024/06/24

Mickael Binois - Leveraging replication in active learning

We were recently joined by Mickael Binois, to talk about 'Leveraging replication in active learning'.

2024/06/24

Mickael Binois - Leveraging replication in active learning

We were recently joined by Mickael Binois, to talk about 'Leveraging replication in active learning'.

2024/06/24

Mickael Binois - Leveraging replication in active learning

We were recently joined by Mickael Binois, to talk about 'Leveraging replication in active learning'.

2024/06/24

Ilija Bogunovic - From Data to Confident Decisions

We were recently joined by Ilija Bogunovic, to talk about 'Robust and Efficient Algorithmic Decision Making'.

2024/06/13

Ilija Bogunovic - From Data to Confident Decisions

We were recently joined by Ilija Bogunovic, to talk about 'Robust and Efficient Algorithmic Decision Making'.

2024/06/13

Ilija Bogunovic - From Data to Confident Decisions

We were recently joined by Ilija Bogunovic, to talk about 'Robust and Efficient Algorithmic Decision Making'.

2024/06/13

Ilija Bogunovic - From Data to Confident Decisions

We were recently joined by Ilija Bogunovic, to talk about 'Robust and Efficient Algorithmic Decision Making'.

2024/06/13

Dario Azzimonti - Preference learning with Gaussian processes

We were recently joined by Dario Azzimonti, to talk about 'Preference learning with Gaussian processes'.

2024/05/23

Dario Azzimonti - Preference learning with Gaussian processes

We were recently joined by Dario Azzimonti, to talk about 'Preference learning with Gaussian processes'.

2024/05/23

Dario Azzimonti - Preference learning with Gaussian processes

We were recently joined by Dario Azzimonti, to talk about 'Preference learning with Gaussian processes'.

2024/05/23

Dario Azzimonti - Preference learning with Gaussian processes

We were recently joined by Dario Azzimonti, to talk about 'Preference learning with Gaussian processes'.

2024/05/23

Mojmír Mutný - Optimal Experiment Design in Markov Chains

We were recently joined by Mojmír Mutný (ETH Zurich), to talk about 'Optimal Experiment Design in Markov Chains'.

2024/03/28

Mojmír Mutný - Optimal Experiment Design in Markov Chains

We were recently joined by Mojmír Mutný (ETH Zurich), to talk about 'Optimal Experiment Design in Markov Chains'.

2024/03/28

Mojmír Mutný - Optimal Experiment Design in Markov Chains

We were recently joined by Mojmír Mutný (ETH Zurich), to talk about 'Optimal Experiment Design in Markov Chains'.

2024/03/28

Mojmír Mutný - Optimal Experiment Design in Markov Chains

We were recently joined by Mojmír Mutný (ETH Zurich), to talk about 'Optimal Experiment Design in Markov Chains'.

2024/03/28